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ABSTRACT

Stripe 82 in the Sloan Digital Sky Survey was observed multiple times, allowing deeper images to
be constructed by coadding the data. Here we analyze the ellipticities of background galaxies in this
275 square degree region, searching for evidence of distortions due to cosmic shear. The E-mode is
detected in both real and Fourier space with > 5-σ significance on degree scales, while the B-mode
is consistent with zero as expected. The amplitude of the signal constrains the combination of the
matter density Ωm and fluctuation amplitude σ8 to be Ω0.7

m σ8 = 0.252+0.032
−0.052.

Subject headings: cosmological parameters — cosmology: observations — gravitational lensing —
large-scale structure of universe

1. INTRODUCTION

Since the first detections of cosmic shear
(Van Waerbeke et al. 2000; Bacon et al. 2000;
Wittman et al. 2000), gravitational lensing has
emerged as a powerful tool in the quest to pin
down cosmological parameters (Rhodes et al. 2001;
Van Waerbeke et al. 2001; Hoekstra et al. 2002;
Jarvis et al. 2003; Bacon et al. 2003; Hamana et al.
2003; Heymans et al. 2004; Rhodes et al. 2004; Fu et al.
2008; Schrabback et al. 2010). Distortions in the shapes
of distant galaxies depend on the intervening cosmic
shear field, and careful observations of the ellipticities
of many background galaxies enable us to measure the
statistics of this field, and compare with the predictions
of a given cosmological model. This comparison is most
robust on large scales, which are unaffected by non-
linearities and baryonic effects. However, observations
are easiest on the small scales covered by deep surveys
where the point spread function is relatively stable, so
only recently have detections moved to larger scales.
Indeed, one of the most promising applications of weak
lensing is to measure properties of dark energy (see
Munshi et al. 2008, for a review), and for this purpose,
precise measurements on scales of order ten arcminutes
and larger will be most constraining.
With this in mind, we have measured the ellipticities

of galaxies in Stripe 82 of the Sloan Digital Sky Survey
(SDSS; York et al. 2000), a rectangular (2.5◦ × 110◦) re-
gion on the sky that was imaged multiple times. The
images have been coadded leading to a much deeper pic-
ture of the galaxies in the Universe than is available
from the part of the survey comprised of single images
(Annis et al. 2011). The relatively large area and deep
images offer a glimpse into the future, as large scale sur-
veys such as the Dark Energy Survey (DES; Abbott et al.
2005) and the Large Synoptic Survey Telescope (LSST;
Abell et al. 2009) come on line. As we present results
obtained on the coadded data, an important considera-

tion is the systematics associated with the coadd. How
careful must one be when combining multiple images of
the sky?
Section 2 describes the data set, the coaddition

method, the correction for the effects of the point spread
function (PSF) modeling, and the prescription for ob-
taining photometric redshifts. Section 3 reviews the dif-
ferent two-point functions used to characterize the shear
distribution and how these are related to the underlying
matter power spectrum. Section 4 presents the correla-
tion function results for both mock catalogs (to obtain
a benchmark against which the actual data can be com-
pared) and the data. Section 5 presents a complementary
approach by estimating the Fourier space power spec-
trum in several different ways. In each case (real space
with the correlation function and Fourier space with the
power spectrum), we isolate modes that should be non-
zero and modes that arise due to systematics and show
that the former are detected and the latter are consis-
tent with zero. Finally, in Section 6 we use the two-point
function results to obtain constraints on the fluctuation
amplitude σ8 and matter density Ωm. Section 7 summa-
rizes our results and conclusions.
While this work was underway, we learned of a parallel

effort by Huff et al. (2011). These two efforts use differ-
ent methods of coaddition and different sets of cuts for
the input images and galaxies; what they have in com-
mon is their use of SDSS data (not necessarily the same
set of runs) and their use of the SDSS PHOTO pipeline for
the initial reduction of the single epoch data and the final
reduction of the coadded data (however, they use differ-
ent versions of PHOTO). Using these different methods,
both groups have attempted to extract the cosmic shear
signal and its cosmological interpretations. We have co-
ordinated submission with them but have not consulted
their results prior to this, so these two analysis efforts are
completely independent, representing an extreme version
of two independent pipelines.

http://arxiv.org/abs/1111.6622v2
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2. STRIPE 82 COADD DATA

2.1. Coadd

The SDSS (York et al. 2000) obtained CCD imaging
in five bands over 10,000 square degrees in the Northern
Galactic Cap. In addition, the SDSS imaged the Ce-
lestial Equator in the Southern Galactic Cap (Stripe 82)
multiple times during the Fall months when the Northern
Cap was not observable. The SDSS Coadd (Annis et al.
2011) is a 275 square degree survey resulting from the
stacking of 20-30 exposures on Stripe 82. The depth
achieved is 2 magnitudes fainter and the seeing is 0.3′′

better than the SDSS Northern Cap data, which is com-
prised of single exposures. Annis et al. (2011) provides
a detailed description of the coadd construction process
and the resulting data set, which includes images and
catalogs, all publicly available as part of the SDSS Data
Release 7 (Abazajian et al. 2009). Here we summarize
the relevant aspects for this work.
SDSS imaging is obtained in a time-delay-and-

integrate (or drift scan) mode in five filters ugriz
(Fukugita et al. 1996) using the 2.5 degree wide SDSS
imaging camera (Gunn et al. 1998). The coadd area is,
therefore, 2.5 degree wide and covers the range −50 ≤
RA ≤ 60 degrees on Stripe 82. For most of the pro-
gram images were taken under photometric conditions
and good seeing, but the SDSS Supernova program took
data in the same area even under non-photometric con-
ditions when the seeing was poor.
Although Stripe 82 has been imaged more than 100

times, the number of exposures included in the coadd is
20-30 because the data were selected using various qual-
ity criteria and, at the time of processing, only data up
to December 1 2005 were available. Fields were selected
based on r-band parameters. In addition to the basic
requirement that the fields contain enough stars for rel-
ative calibration, the selection allowed at the most 2′′

PSF FWHM, 0.5 mag of sky noise increase and 0.2 mag
of extinction. Rejection of entire fields based on r-band
parameters maximizes the homogeneity of the input data
for the coadd construction.
The selected fields undergo photometric calibration

and sky subtraction. Masks accounting for Stripe 82
geometry and bad/saturated pixels are created as well
as the inverse variance and weight maps. All images,
maps and masks are aligned on a rectangular grid with
the appropriate dimensions (−50◦ ≤ RA ≤ 60◦ and
−1.25◦ ≤ Dec ≤ 1.25◦) and in the usual SDSS image
format (1489 rows along RA and 2048 columns along
Dec, at 0.396′′/pix scale in a J2000 coordinate system).
The coaddition itself is done using a weighted clipped

mean on an image by image basis where wi = Ti/(σi ×
FWHMi)

2 is the weight and Ti, σi and FWHMi are the
sky transparency, sky noise and seeing of the ith image.
Good seeing data taken when the sky is clear and the
atmospheric glow is at a minimum are weighted higher
by this scheme, which reduces the average PSF in the
coadd images to 1.1′′ (median seeing for the SDSS single
exposure data is 1.4′′). The PSFs in the Coadd were ob-
tained by adding the input PSFs using the same weights
used for the images. The resulting PSF was used as input
to the SDSS photometric pipeline (PHOTO, Lupton et al.
(2001)) which produces the galaxy catalog used as base
for this work. The quantities listed in the catalog are the

same quantities reported for the SDSS main survey cat-
alog, including measurements of the second and fourth
moments for each galaxy and of the PSF at the position
of each galaxy.

2.2. Photometric redshifts

Photometric redshifts are crucial for this work, as well
as related projects. A neural network algorithm that
was successfully used in the SDSS DR6 (Oyaizu et al.
2008b) was applied to the coadd galaxies. The resulting
photometric redshift galaxy catalog is fully described in
Reis et al. (2011) and is publicly available as an SDSS
DR7 value-added catalog. Here we present an overview of
the method and the catalog properties that are relevant
for this work.
We use a particular type of Adaptive Neural Net-

work called Feed ForwardMultilayer Perceptron (FFMP)
to map the relationship between photometric observ-
ables and redshifts (for details see Reis et al. 2011;
Oyaizu et al. 2008b). An FFMP network consists of sev-
eral input nodes, one or more hidden layers, and sev-
eral output nodes, all interconnected by weighted con-
nections. Once the network configuration is specified, it
can be trained to output an estimate of redshift given
the input photometric observables. The training pro-
cess involves finding the set of weights that gives the
best photometric redshift estimate for the training set (a
sample of galaxies with spectroscopic redshifts). These
weights are then applied to the full photometric sample
to produce a photometric redshift catalog. Errors are
estimated using the Nearest Neighbor Error estimator
(Oyaizu et al. 2008a). This estimator associates photo-z
errors to photometric objects by considering the errors
for objects with similar multi-band magnitudes in the
validation set (a second sample of galaxies with spectro-
scopic redshifts).
A spectroscopic sample of 82, 741 galaxies was es-

tablished by gathering data from various surveys over-
lapping Stripe 82. 69% of the sample was obtained
from the SDSS data (Abazajian et al. 2009), 12%
from DEEP2 (Weiner et al. 2005), 11% from WiggleZ
(Drinkwater et al. 2010), 7% from VVDS (Garilli et al.
2008), and 2% from CNOC2 (Yee et al. 2000). The full
sample is divided in two sets of equal size, for training
and validation respectively. The best results are obtained
when magnitudes are used as input parameters and the
training is performed in independent magnitude slices in
the r-band.
The resulting galaxy catalog, with photometric red-

shift measurements, forms the base catalog for this work.
The photometric redshifts are well measured up to z ∼
0.8, the mean photo-z error of the validation set galaxies
is σz = 0.031, and the average estimated photo-z er-
ror for the full sample is σz = 0.18. Our analysis relies
on the redshift probability distribution function of the
galaxies used in the cosmic shear measurement. As dis-
cussed in the following section, we perform several cuts
in the galaxy catalog to mitigate the systematic effects.
We cut in i-band magnitude (18 < i < 24), size (> 1.5×
the PSF size) and ellipticity components (< 1.4). The
overall photometric redshift distribution, for the galax-
ies remaining after these cuts is shown in Fig. 1 (grey
histogram). Motivated by the fact that the photomet-
ric redshift distribution is also a source of systematics in
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our analyses, and that we observe a narrow peak in the
distribution at z ∼ 0.8 due to large errors at high z, we
tested two cuts in photometric redshift errors, σz < 0.20
and σz < 0.15. These are also shown in Fig. 1 (blue
and red histograms, respectively) and the corresponding
results will be discussed in the following sections.

Σz<0.15
Σz<0.20
all

0 0.2 0.4 0.6 0.8 1.0 1.2

1

2

3

4

5

6

7

8

9

ph otom etric redsh ift

ga
la

xy
co

u
n

ts
Ið
�1

0
5
M

Fig. 1.— Photometric redshift distribution for galaxies passing
the magnitude, size and ellipticity cuts (grey) and the photometric
redshift error cuts σz < 0.20 (blue) and σz < 0.15 (red).

2.3. Shape Measurement and PSF Correction

The initial shape measurement is performed using the
SDSS PHOTO pipeline (Lupton et al. 2001), which mea-
sures the shapes of objects using adaptive moments
(Bernstein & Jarvis 2002). However, we find that we
need to correct the point spread function (PSF) model
computed by the SDSS reduction pipeline, as there are
small but significant systematic offsets between the PSF
model adaptive moments and the same quantities as di-
rectly measured on bright stars. For example, the top
panel of Fig. 2 shows the residuals in the ellipticity
component e1, relative to the PSF model, for unsatu-
rated bright stars with 16 < i < 17. Note that our
e1, e2 convention is such that the positive x and y direc-
tions are aligned along the positive Dec and RA direc-
tions, respectively. The e1 residuals show a small over-
all bias (∆e1 = 0.004), as well as conspicuous trends
(∆e1 ∼ 0.01) as a function of declination, plus dis-
continuities between neighboring CCD camera columns
(“camcols”). Note there are 12 camcols in all: 6 physical
columns of CCDs in the SDSS imaging camera, which
are then interleaved by the North and South scans of
Stripe 82. In order to remove these PSF residuals, which
would otherwise contribute systematic errors to the cos-
mic shear measurements, we make corrections to the
PSF model by fitting polynomials to the residuals along
the declination direction, separately for each of the 12

camcols, and for each of the 4 adaptive moments quan-
tities relevant to the linear PSF correction scheme we
will use (Appendix B of Hirata & Seljak 2003). Specifi-
cally, we fit quadratic polynomials in declination to the
residuals in the two ellipticity components (mE1-mE1PSF,
mE2-mE2PSF) and in the size (mRrCc - mRrCcPSF), and
we fit linear polynomials to the residuals in the 4th mo-
ment (mCr4 - mCr4PSF). The bottom panel of Fig. 2
shows the improved e1 residuals after applying the cor-
rection procedure of subtracting off the best-fit polyno-
mial to the original e1 residuals vs. declination. The
improvement in the residuals is visible, for example, at
declination ≈ −1◦, at the boundary between the first two
camcols: the discontinuity visible there in the top panel
is gone in the bottom panel, after the application of our
correction procedure.

Fig. 2.— Top panel: The difference between the measured el-
lipticity component e1 and the PSF model e1, for unsaturated
bright stars with 16 < i < 17, plotted against declination.
Note the small overall bias and the trends and discontinuities
in these e1 residuals. Bottom panel: Same as the top but
after applying the PSF correction procedure described in the
text, which removes the bias, as well as reduces the trends
and discontinuities in the e1 residuals.

After correcting the PSF model as described above, we
proceed to calculate PSF-corrected galaxy ellipticities,
using the linear PSF correction algorithm described in
Hirata & Seljak (2003). The galaxies used in our lens-
ing analysis are required to be classified by PHOTO as
galaxies (type=3), have extinction corrected model mag-
nitudes (Stoughton et al. 2002) in the range 18 < i < 24,
not contain saturated pixels, and not have flags indicat-
ing problems with the adaptive moments measurements.
We use only the shape measurements from the i band
as it is the filter that has the best seeing (1.05′′) in
the coadd, as shown in Annis et al. (2011). Similar to
Mandelbaum et al. (2005), we use the PHOTO star/galaxy
classification and restrict the sample to galaxies at least
50% larger than the PSF. This is quantified by requir-
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ing the resolution factor R > 0.33, where R (not to be
confused with responsivity R introduced below) is given
by

R = 1− MPSF
rrcc

Mrrcc
(1)

where Mrrcc and MPSF
rrcc are the sum of the second order

moments (in the CCD row and column directions) of the
object and PSF respectively. Similar to the SDSS lens-
ing analysis of Hirata et al. (2004), we further restrict the
galaxies used in our study to those with PSF-corrected
ellipticities |e1| < 1.4 and |e2| < 1.4. The number of
galaxies used in our analysis is 3.70 million for the photo-
z error σz < 0.15 sample and 4.69 million for the σz < 0.2
sample. These numbers correspond to surface densities
of 3.7 and 4.7 galaxies per arcmin2, respectively. The
rms ellipticity for our galaxies is σe = 0.44 (for each of
the e1 and e2 components) for the σz < 0.15 sample
and σe = 0.47 for the σz < 0.2 sample. Note that σ2

e
is effectively the average value of the quadrature sum of
the intrinsic shape noise and the ellipticity measurement
error (and a small contribution from the cosmic shear sig-
nal) for each galaxy. Following Hirata et al. (2004), the
intrinsic shape noise contribution alone is eint = 0.37 per
ellipticity component, resulting in a shear responsivity
R = 2(1 − e2int) = 1.7. We then convert from ellipticity
to shear γ using γ = e/R.
We have found that the PSF-corrected galaxy ellip-

ticities e1 and e2 have typical average values over each
CCD camcol of |ē1|, |ē2| ≈ 0.003, whereas we would
have expected that the average over a thin but very
long ∼0.2◦ by 110◦ camcol should be closer to zero,
i.e., |ē| ≈ 8 × 10−4, given the measured rms elliptic-
ity σe = 0.45 and the average of 3.5×105 galaxies per
camcol. We have attributed this additive bias in the el-
lipticity measurements to remaining camcol-dependent
systematic errors in our PSF model, and have chosen to
correct for the bias by subtracting off the mean of the
galaxy e1 and e2 values on a camcol-by-camcol basis. If
not corrected, the result is to cause additive offsets in the
correlation function ξ of order |∆ξ| ∼ ē2/R2 ∼ 3× 10−6,
comparable to the cosmic shear signal we will measure
in Section 4.2. In Section 4.3 we will assess the potential
impact on our lensing analysis of any residual systematic
effects due to the PSF, by checking the cross correlation
function of the PSF and galaxy ellipticities.
Next, we divide the Stripe 82 area into square pix-

els of size 0.1◦ × 0.1◦, and compute the average PSF-
corrected ellipticity components e1 and e2 in each pixel
for all the galaxies meeting our lensing sample criteria.
We use these averaged ellipticity values in our subsequent
analyses. Fig. 3 shows an example map of galaxy ellip-
ticities for a small part of the Stripe 82 area. The map is
shown both before and after PSF correction, in particu-
lar illustrating the efficacy in removing the PSF-induced
ellipticity patterns in the outer CCD camera columns,
along the top of Fig. 3. The distributions over our full
data area of the pixel-averaged e1 and e2 values are plot-
ted in Fig. 4, both before and after PSF correction. The
pre-corrected galaxy ellipticity distributions clearly show
the effects of the PSF. In particular, the main feature is
the negative mean and tail seen in the e1 distribution, in-
dicating an elongation of the galaxy shapes along the RA
direction, which is also the scan direction of the coadd

imaging runs. In contrast, after applying the PSF cor-
rection procedure as described above, the galaxy ellip-
ticity distributions are seen to be much better behaved,
without any conspicuous asymmetry or bias. In fact, the
post-correction e1 and e2 distributions are each well ap-
proximated by a Gaussian with σ ≈ 0.04. This value
of σ is consistent with the single-galaxy rms ellipticity,
σe = 0.45, divided by the square root of the average num-
ber of galaxies per pixel N̄ , where N̄ = 129 and 163 for
the σz < 0.15 and 0.20 samples, respectively.

3. TWO-POINT FUNCTIONS

The measured ellipticities, e1 and e2, receive contri-
butions (in addition to the noise) from the cosmic shear
components γ1 and γ2. The mean cosmic shear is zero,
but the correlations are non-zero and dictated by the
underlying cosmology. The most basic two-point func-
tion is obtained by multiplying the shears (ei/R) of pairs
of galaxies, collecting pairs with angular separations in
a given bin to form, e.g., ξii(θ). This two point func-
tion depends on the power spectrum of the convergence
field κ; for example, the expected value of the correlation
function for γ1 between two pixels located at angular po-
sitions ~n1 and ~n2 is (Hu & White 2001)

〈γ1(~n1)γ1(~n2)〉=
∫

d2l

(2π)2
CEE

l cos2 2ϕl

× [j0(lxσ/2)j0(lyσ/2)]
2
ei
~l·(~n1−~n2) (2)

where ϕl is the angle that the 2D vector ~l makes with
a fixed x-axis and the spherical Bessel functions encode
the effects of the window function of a square pixel with
sides σ. The power spectrum of the convergence is

CEE
l =

∫ ∞

0

dχ
W 2(χ)

χ2
Pδ(k = l/χ; z(χ)). (3)

where χ(z) is the comoving distance out to redshift z, Pδ

is the matter power spectrum, and the window function
depends on the distribution of background galaxies:

W (χ) =
3

2
ΩmH2

0χ

∫ ∞

χ

dχ′ dn

dχ′

(

1− χ

χ′

)

(4)

with H0 the current Hubble rate. For the redshift dis-
tribution of Stripe 82, the window function is a smooth
function peaking at z ≃ 0.35 and is shown in Fig. 5.
Note that the 2-point function of γ1 in Eq. (2) depends

not only on the angular distance between two pixels, but
also on the direction of this vector ~n1 − ~n2. It is there-
fore useful to combine the various 2-point functions of γ1
and γ2 into two that depend only on the distance, one of
which is not sourced by the convergence and so should
vanish, and the other of which contains all the informa-
tion about the power spectrum of the convergence. To-
wards this end, we decompose the shears into tangential
and cross components measured relative to the line con-
necting a galaxy pair. The tangential component is per-
pendicular (positive) or parallel (negative) to this line,
while the cross-component has axes 45 and 135 degrees
away from this line. The correlation function of the two
components are then built by summing the products of
etet and e×e× for each pair separated by an angular dis-
tance within the bin of interest. One can then show that,
of the two linear combinations

ξ±(θ) ≡ ξtt(θ) ± ξ××(θ), (5)
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= 10% total ellipticity , un corrected

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

RA

D
ec

= 10% total ellipticity , corrected

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

RA

D
ec

Fig. 3.— Map of the galaxy ellipticities, averaged over the 0.1◦ × 0.1◦ pixels used in our analysis, for a small region of the
Stripe 82 area. The map is shown both before (left) and after (right) PSF correction, showing the effective removal of the
PSF-induced ellipticities seen in particular along the top of the map on the left. For reference, a stick of ellipticity e = 0.1 is
labeled at the top of each panel.

ξ+ is simply equal to

ξ+(θ) =

∫

d2l

(2π)2
CEE

l [j0(lxσ/2)j0(lyσ/2)]
2 cos [lxθ] .

(6)
The goal is to separate modes produced by scalar cos-

mological perturbations (so-called E-modes) from those
produced by systematics (B-modes). Several groups have
shown (Schneider et al. 2002; Fu et al. 2008) that the
cleanest way to do this is to define

ξE,B(θ) =
ξ+(θ)± ξ′(θ)

2
. (7)

where

ξ′(θ) ≡ ξ−(θ) + 4

∫ ∞

0

dx

x
ξ−(x)

(

1− 3
θ2

x2

)

. (8)

For scalar perturbations, ξB = 0, and ξE = ξ+. To
check for systematics, we will compute all of these but
argue that ξ+ may be slightly polluted by a small B-mode
contamination so we obtain final cosmological constraints
from ξE .
An alternative approach is to extract the Cl spectra di-

rectly from a quadratic estimator of the observed shears,
essentially inverting Eq. (2) and its cousins. In §5, we de-
scribe algorithms for this direct approach of extracting
the E- and B-spectra.

4. CORRELATION FUNCTION RESULTS

4.1. Simulations

To set up expectations, we generated mock catalogs
of shear for the Stripe 82 area, first divided into 42
2.6◦ × 2.6◦ boxes, and then with each box further sub-
divided into square pixels of size 6′ × 6′ (= 0.1◦ × 0.1◦).
The cosmic shear in each pixel is drawn from a Gaussian
distribution with mean zero and covariance matrix that
includes both signal and shape noise. The signal part of

the covariance matrix accounts for all correlations over
the larger box and is computed using Eq. (2) and simi-
lar 2-point functions for γ2 assuming a standard ΛCDM
model (H0 = 70 km s−1 Mpc−1; Ωm = 0.25, σ8 = 0.8)
and the redshift distribution depicted in Fig. 1. Shape
noise adds a diagonal term to the shear covariance matrix
equal to (eint/R)2/Ni, where the intrinsic shape noise
eint = 0.37 and the shear responsivity R = 1.7, as noted
earlier in Section 2.3. The number of galaxies Ni in the
i-th small pixel is set equal to the number of galaxies in
the real data in that same pixel with one caveat. The
average density of galaxies per pixel in the mock cat-
log is 264, similar to the SDSS data set with no photo-z
cuts. The density in the catalog with σz < 0.15 is more
than a factor of two smaller than this. So the errors esti-
mated using the mocks should be smaller than those we
eventually obtain using the cut photo-z samples.
We generate 23 full Stripe 82 mock surveys, each of

which is divided into 42 2.6◦ × 2.6◦ boxes, for a total
of 966 boxes. For each of these boxes we compute the
shear-shear correlation function vs. θ, the angular sepa-
ration between the 0.1◦ × 0.1◦ spatial pixels into which
the simulated shears are binned. We first use the fol-
lowing estimator for the tangential (ξtt) and cross (ξ××)
correlation functions

ξtt(θ)=

∑

i,j NiNjγt,iγt,j
∑

i,j NiNj
(9)

ξ××(θ)=

∑

i,j NiNjγ×,iγ×,j

Σi,jNiNj

where the sum is over all pairs i, j of pixels separated
by the angle θ, γt,i and γ×,i are the tangential and cross
components of the shear in pixel i (related to the ellip-
ticity by γ = e/R), and Ni is the number of galaxies
in pixel i. The weighting by Ni is equivalent to inverse
variance weighting according to the number of galaxies in
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Fig. 4.— The distribution (black) of galaxy ellipticities e1 (top) and e2 (bottom), averaged over the 0.1◦×0.1◦ pixels used in our
analysis, for the photo-z error < 0.15 sample. The distributions are shown both before (left) and after (right) PSF correction,
in order to demonstrate the effectiveness of our procedure in removing the PSF from the galaxy ellipticity measurements. Also
shown are best-fit Gaussians (blue), which are good approximations to the PSF-corrected ellipticity distributions. The text in
red gives the mean and σ of the Gaussian in each panel.

Fig. 5.— The window function that weights the power spec-
trum in Eq. (3) for background galaxies in the two cuts used
in our sample.

each pixel, taking each mock galaxy to contribute a fixed
amount of intrinsic shape noise σγ = eint/R per shear
component. We then compute the ξ+ correlation func-
tion using Eq. (5) and plot the results in Fig. 6, where

we show the mean (and standard deviation of the mean)
of ξ+ averaged over all the mock catalogs, as well as
the results from a single, typical Stripe 82 mock. Also
plotted as a curve is the input correlation function. At
small θ, the mean value of ξ+ averaged over all the mocks
is slightly higher than the input ξ+ due to binning. A
given angular bin contains only a fixed number of sep-
arations because the pixel centers are spaced periodi-
cally. For example, the lowest bin, shown as centered
on θ = 0.13◦, contains only the two separations 0.1◦ and
0.14◦. A proper treatment would weight these two con-
tribution appropriately and eliminates the small discrep-
ancy. However, this weighting produces only very small
changes in ξ, changes that we are sensitive to only when
considering the average over all the mocks, but which are
far below the noise in the actual data set, as can be seen
in Fig. 6.
We then extract cosmological parameters from each of

the 23 mock surveys. To do this, we form a χ2 with the
covariance matrix measured from the 42 boxes compris-
ing each Stripe 82 mock catalog. We then scan over a
range of values of σ8 and Ωm, and Fig. 7 shows the re-
sulting best-fit σ8 and Ωm values for all the mocks, along
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Fig. 6.— Correlation function ξ+ measured for 23 mock
catalogs, each consisting of the full Stripe 82 area. The solid
curve is the input true correlction function. The rectangular
open (blue) points and error bars show the mean and standard
deviation of the mean of ξ+ averaged over all 23 mocks, while
the circular closed (red) points and errors are the results for
a single, typical mock.

with the true values for the input model.

Fig. 7.— Best fit values of the cosmological parameters
σ8 and Ωm from 23 mock catalogs, each simulating the full
Stripe 82 area, analyzed with the correlation function. The
open square denotes the true input model. The line traces
out the degenerate direction, with Ω0.7

m σ8 constant.

Fig. 7 suggests a convenient way to quote the results of
both the mocks and the data. Apparently only a combi-
nation of the two parameters is constrained by the data,
with the degeneracy given by Ω0.7

m σ8 = constant. The
input value of this combination (with Ωm = 0.25 and
σ8 = 0.8) was Ω0.7

m σ8 = 0.303, while the mean over all
mocks was 0.300. The rms of the mocks was 0.022, con-
sistent with the error bar from a single mock.

4.2. Data

We now compute the shear-shear correlation functions
for the real data and plot them in Fig. 8. We use the
same estimators for the tangential (ξtt) and cross (ξ××)
correlation functions given earlier in Eq. (9). The weight-

ing is again inverse variance weighting according to the
number of galaxies in each pixel, now taking each real
galaxy to contribute a fixed amount of noise σγ = σe/R
per shear component. As noted earlier in Section 2.3, for
our galaxies σe = 0.45 and includes both intrinsic shape
noise and the ellipticity measurement error.
We then compute the ξ+ correlation function using

Eq. (5) and the E- and B-mode correlation functions
via Eq. (7), and plot the results for these three corre-
lation functions in Fig. 8, for each of our photo-z error
< 0.15 and < 0.2 samples. As we did for the simula-
tions, for the real data we also compute the correlation
functions by first dividing the Stripe 82 area into 42 non-
overlapping 2.6◦×2.6◦ square boxes, then calculating ξ+,
ξE , and ξB separately for each box, and finally averaging
the results over all the boxes. We use this procedure as it
allows us to easily derive an empirical estimate of the un-
certainties and the covariance matrix of the data, using
the variances and covariances of the ξ values determined
over the ensemble of 42 boxes. The correlation functions
are computed in eight evenly spaced, logarithmic bins of
pixel pair separation θ, ranging from 0.13◦ to 3.16◦.
The top panels of Fig. 8 show that we have a significant

cosmic shear signal in our data on scales of about 0.1◦ to
about 1.3◦. The bottom panels of Fig. 8 show that the
individual ξB(θ) values are mostly consistent with zero
within the error bars, though overall there does appear to
be some small positive B-mode systematic in the data.
This is consistent with the top panels of Fig. 8, which
show that the ξE values are generally somewhat smaller
than the ξ+ values; recall from Eq. (7) that ξ+ = ξE+ξB.
For the case of no B-mode contamination, it should suf-
fice to use the more robustly computed ξ+ for cosmology
fitting, but for our data we will consider both ξ+ and ξE
in the cosmology fits, in order to check for the impact
of potential B-mode contamination. The best-fit results
are also shown in Fig. 8 and will be discussed below in
Section 6.

4.3. Systematics Check

Imperfect PSF corrections are the main source of sys-
tematics for cosmic shear measurements. We can verify
that our systematics are under control by computing the
cross-correlation between the corrected galaxy elliptici-
ties e and the uncorrected stellar ellipticities e⋆, normal-
ized by the auto-correlation of e⋆, following the procedure
of Bacon et al. (2003). Here we do something similar,
but use the PSF model ellipticities ePSF evaluated at the
location of each galaxy, instead of the measured elliptic-
ities of a separate sample of stars. This serves the same
purpose, i.e., to identify in the measured shear signal γ
any spurious contributions due to uncorrected contami-
nation from the PSF ellipticity. If the observed shear is
contaminated by the PSF, then

γ = γtrue + aγPSF , (10)

where a is a constant. Then the observed two-point cor-
relation function gets an unwanted contribution of

ξSYS
+ = a2〈γPSFγPSF〉. (11)

The constant a can be estimated by cross-correlating the
PSF model ellipticities with the galaxy ellipticies leading
to (Bacon et al. 2003)

ξSYS
+ =

〈γ γPSF〉2
〈γPSFγPSF〉

, (12)
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Fig. 8.— The measured shear-shear correlation functions for our data, plotted as data points with error bars, in logarithmically-
spaced bins of angular separation θ. The results for ξ+ (black) and ξE (red) are plotted in the top panels, and the results for ξB
(blue) are shown in the bottom panels. Note the y-axis range is the same in the top and bottom panels to facilitate comparisons.
The left-hand panels are for the photo-z error σz < 0.2 sample and the right-hand panels for the σz < 0.15 sample. The curves
in the top panels are the correlation functions derived from the best-fitting cosmologies to each photo-z error sample, using
either the ξ+ or ξE data.

where the angular correlation function ξSYS
+ can be di-

rectly compared to ξ+, providing an estimate of the PSF
systematic effect on our measurement. Error bars are
computed for ξSYS

+ the same way as for ξ+, using the
standard deviation of the mean values of ξ for the 42
boxes into which Stripe 82 is divided. Figure 9 shows the
result of this check for both the σz < 0.15 and σz < 0.2
samples, demonstrating that our PSF systematics are at
about the 1% level on scales θ < 2◦. For the two largest
θ bins, ξSYS

+ appears to be larger in proportion to ξ+, but
are still small compared to the larger ξ+ errors on those
scales. We have explicitly compared the cosmology fits

with and without first subtracting off ξSYS
+ from ξ+ and

have found negligible differences, thus confirming that
our cosmology results are not significantly contaminated
by residual PSF systematic errors.
In addition to PSF-related systematics, uncertainties

in the redshift distribution of our galaxy sample will also
lead to errors in our cosmic shear results. As discussed
earlier in Section 2.2, we address this issue by present-
ing our results using two galaxy samples defined by the
different photo-z error cuts σz < 0.2 and σz < 0.15. As
will be shown in Section 6, our cosmology results are
insensitive to the choice of photo-z cut.
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Fig. 9.— Comparison between the correlation function ξSYS
+ induced by residual PSF systematics (orange) and the shear-shear correlation

function ξ+ (black), for both the σz < 0.20 (left) and σz < 0.15 (right) samples, demonstrating that our PSF systematics are at a 1% level
on scales θ < 2◦. See Section 4.3 for additional discussion.

Also, as described in Section 2.3, we found and cor-
rected for a residual additive bias in the shear measure-
ment, which is likely due to CCD camcol-dependent er-
rors in the PSF model affecting the subsequent linear
PSF correction and galaxy ellipticity measurements. In
addition to this additive bias, the Hirata & Seljak (2003)
linear PSF correction scheme we use is subject to a mul-
tiplicative shear calibration error δγ/γ that depends on
galaxy type and resolution factor. This issue was stud-
ied in detail for SDSS galaxies in Hirata & Seljak (2003)
and Hirata et al. (2004), with the latter concluding that
|δγ/γ| . 0.07. This fractional shear calibration error
leads to a fractional error in the correlation function
|δξ/ξ| ≈ 2|δγ/γ| . 0.14. Compared to the statistical
fractional error in the amplitude of ξ+ of about 0.25 (de-
termined as usual from our 42 boxes on Stripe 82), the
additional systematic fractional uncertainty |δξ/ξ| due to
shear calibration leads only to a . 15% increase in the
fractional error on ξ+ when added in quadrature. We
will neglect this as it is a small effect compared to the
much larger existing statistical errors on ξ.

5. POWER SPECTRUM

The power spectrum and the correlation function are
complementary ways of measuring the two point statis-
tics of any field. The power spectrum method, however,
has been used less commonly for cosmic shear (but see
Brown et al. 2003), due to the complexity in account-
ing for the non-trivial window function in Fourier space
that arises from survey geometry and from a non-uniform
galaxy distribution. In this section we estimate the power
spectrum of the Stripe 82 coadded data, while account-
ing for the effects of the survey geometry and of spatially
non-uniform shape noise. We use the quadratic estimator
(hereafter “QE”) to estimate the power spectrum and its
errors, following the approach proposed by Hu & White
(2001) (also see Seljak 1998). To cross-check our an-
swer, we also derive the power spectrum using a fast

Fourier transform, taking advantage of the nearly flat
geometry of Stripe 82, and construct a pseudo estimator
(hereafter “PE”) of the power spectrum. For the pseudo
estimator, we first weight the shear value measured in
each pixel with the inverse shape noise in order to down-
weight masked pixels or pixels with large shape noise,
then Fourier transform, generate a pseudo power spec-
trum, and finally deconvolve the effect of the weight to
extract an unbiased power spectrum. We test the fidelity
of these methods using the 23 Gaussian SDSS mock cat-
alogs that mimic the Stripe 82 data, and then apply the
two methods to the observed real Stripe 82 data. In or-
der to ease the computational load in calculating matrix
operations, we divide the Stripe 82 data into 42 boxes of
2.6◦ × 2.6◦ and ignore the correlations between different
boxes. That is, we lose clustering information on scales
larger than ∼ 1.3◦.

5.1. Quadratic Estimator

5.1.1. Summary of Method

We follow the method described in Hu & White (2001),
which is summarized below. We first assume that the
likelihood of the measured shear field is:

L=
1

(2π)N |C(Dα)|1/2
exp

[

−1

2
dTC−1(Dα)d

]

, (13)

where d is the data vector, i.e., the two components of
the measured shear field for the 42 boxes of 26×26 pixels.
The covariance matrix C is the sum of the cosmological
signal Csig and the noise Cnoise due to the rms intrinsic
ellipticity and the measurement errors:

C=C
sig +DNC

noise, (14)

where we have inserted a parameter DN to account for
any deviation from the assumed level of shape noise; that
is, if the shape noise is known perfectly, then DN is fixed
to one. In the case of data with large shape noise, we
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find that DN and the EE and BB power from the cosmic
signal are difficult to estimate simultaneously, so we will
fix DN to unity. But it is useful to allow it to vary in the
case of relatively low shape noise. Since we are ignoring
the correlation between the boxes, C is block-diagonal,
with 42 separate blocks. The signal part is identical from
box to box, but because the galaxy density varies, the
shape noise differs slightly from one block to another.
Labeling the shear components with indices a, b and

the pixels with i, j, the covariance matrices are

C
sig
(ij)(ab) = 〈γa(~ni)γb(~nj)〉,

C
noise
(ij)(ab) =

σ2
γ

Ni
δijδab, (15)

where Ni is the number of galaxies in pixel i and σγ is
the rms of the shears of all the galaxies.
Eq. (2) gives the expression for one element of the sig-

nal covariance matrix under the assumption that only the
E-mode is non-zero. We want to simultaneously measure
the E- and B- modes (using the latter as a systemat-
ics check), so we need to generalize Eq. (2). Following
Hu & White (2001), we write

〈γ1(~ni)γ1(~nj)〉 =
∫

d2l

(2π)2
[CEE(l) cos

2 2ϕl

+CBB(l) sin
2 2ϕl − CEB(l) sin 4ϕl]W

2(~l)ei
~l·(~ni−~nj),

〈γ2(~ni)γ2(~nj)〉 =
∫

d2l

(2π)2
[CEE(l) sin

2 2ϕl

+CBB(l) cos
2 2ϕl + CEB(l) sin 4ϕl]W

2(~l)ei
~l·(~ni−~nj),

〈γ1(~ni)γ2(~nj)〉 =
∫

d2l

(2π)2
[
1

2
(CEE(l)− CBB(l)) sin 4ϕl

+CEB(l) cos 4ϕl]W
2(~l)ei

~l·(~ni−~nj), (16)

where ϕl is the angle between ~l and the x-axis, W (~l) =
j0(lxσ/2)j0(lyσ/2) is the pixel window function in
Fourier space, and σ is the pixel side (0.1◦) in radians.
We now approximate the angular power spectra with

piecewise constant band powers; that is, we set l(l +
1)C(l)/2π to a constant value Dα over a band α spanning
a range of l. Then the signal covariance matrix is a linear
combination of the band powers:

C
sig
(ij)(ab) =

∑

α

Dα

∫

l∈α

dl

2(l+ 1)

×
[

w0(l)I
α
(ij),(ab) +

1

2
w4(l)Q

α
(ij),(ab)

]

, (17)

where Dα are the EE, BB, and EB band powers. The
integration in Eq. (17) runs over the range of l within
each band. We refer readers to Hu & White (2001) for
the exact forms of w0 and w4, which are the decom-
posed pixel window functions, and matrices Iα(ij),(ab) and

Qα
(ij),(ab)

1.

By maximizing the likelihood as a function of the an-
gular power spectrum, i.e., by finding Csig that describes
the observed data the best, we derive the best-fit shear
angular band powers. The solution is derived iteratively

1 Hu & White (2001) has a typo in Eq. (14): Qββ for 〈γ2γ2〉 is
J0 + 2c4J4 + c8J8, not J0 + 2c4J4 − c8J8.

by using the Newton-Raphson method to find the root of
dL/dDα = 0, and each step toward an improved estimate
is determined by stepping

δDα∝
∑

β

1

2
(F−1)αβtr[(dd

T − C)(C−1
C,βC

−1], (18)

where C,α ≡ ∂C/∂Dα and the Fisher matrix is

Fαβ =
1

2
tr(C−1

C,αC
−1

C,β). (19)

Assuming that the likelihood is sufficiently Gaussian near
the maximum, we interpret F−1 as the covariance matrix
of the measured band powers.
Given an estimated band power, how do we correct for

the finite band width and compare it to the theoretical
prediction? The simplest ideas – taking the value of Dα

at the center of the bin or averaging over all l’s in the
bin – are not quite right. Rather, each measured Dα

samples the Cl’s with a window function of its own (see,
e.g., Knox 1999) not exactly equal to a square well. To
compute this, we use the fact that the expected value of
the band power, 〈Dα〉, is related to the power spectrum
at each wave number D(ℓ′) through the window function
Wαℓ:

〈pα〉=
∑

l

WαℓDℓ, (20)

where ℓ is an integer wavenumber (taken here to lie
within the range 10 < l < 3600), and

Wαℓ = F−1
αβ

1

2
tr[C−1

C,βC
−1

C,ℓ], . (21)

Here C,ℓ is the derivative of C with respect to the power
at an integer wavenumber ℓ and derived using Eq. (17)
with ∆l = 1, i.e., without integration. When we de-
rive the cosmology fit, we convolve this window func-
tion with the theoretical model to compare to the data.
Fig. 10 shows the window function for Stripe 82 for our
bands. The right panel shows that indeed for the op-
timal quadratic estimator, our basic systematics test –
absence of a B-mode – is robust, in that a model with
only E-modes will not produce on average a spurious de-
tection of B-modes due to the complicated geometry and
non-uniform shape noise.

5.1.2. Mock Tests

We test our estimator using Gaussian mocks as de-
scribed in §4. We analyze two sets of mock catalogs: one
with very low shape noise and one with the pixel-to-pixel
varying shape noise that is very similar to the observed
data on Stripe 82. Hereafter we refer to the former as
“low-noise mocks” and the latter as “SDSS mocks.” The
low-noise mock is generated using a theoretical Gaussian
covariance matrix for the fiducial concordance cosmology,
with a small amount of shape noise, i.e., σ2

γ/Ngal, with a

constant Ngal = 250 and σ2
γ = 0.021762; we generate one

realization of the 42 boxes on Stripe 82.
We first use the low-noise mock to test our estima-

tors in the case of minimal shape noise. Figure 11 shows
the estimated band power (data points) and the associ-
ated errors for the EE and BB modes using the low-noise
mock. The dashed line corresponds to the input cosmol-
ogy. We find that the EE mode band power is consistent
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Fig. 10.— Band window functions. The left panel shows the contribution from the EE power spectrum at an integer wave number to
the EE band power. The curves with different colors describe different bands and the vertical lines correspond to the naive centers of the
bands. The sum of each curve is close to unity. The right panel shows the contribution from the EE power spectrum to the BB band
power. As expected, there is no leakage between EE and BB modes on average.

Fig. 11.— The best-fit EE (squares) and BB (circle) power
spectra of the low-noise mock using the quadratic estimator with-
out prior knowledge of the shape noise. A solid point denotes a
postitive value and an open point a negative value. The dashed
line corresponds to the input cosmology. The error bars reflect the
Gaussian error. The BB mode is much smaller than the EE mode
and is zero within 1− 2σ. The dotted line shows the level of shape
noise in the power spectrum.

with the input power spectrum to an impressive accu-
racy. The derived best fit BB power spectra are zero
within 1− 2σ, i.e., fairly consistent with the input.
We next test our methods in the presence of realistic

Fig. 12.— Power spectra of the SDSS mocks using the
quadratic estimator. Left: the average of the best-fit EE and
BB power spectra of the 23 SDSS mocks. There are two sets
of error bars. The larger set of error bars show the standard
deviation among the 23 mocks. The smaller set of error bars
show the error associated with the average of the 23 mocks,
i.e., the standard deviation divided by

√
23. The dashed line

shows the input EE power spectrum. The input BB power is
zero. The red dotted line shows the shape noise contribution
to the error on the band power.

shape noise σ2
γ = 0.252, using Ngal(~x) similar to the real

data, as described in §4. On average, these SDSS mocks
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contain Ngal = 264 per pixel. We have a total of 23
mocks of the 42 boxes.
Figure 12 shows the average and standard deviation of

23 SDSS mock power spectra derived using the quadratic
estimator. We put two sets of error bars on each of the
EE and BB band powers. The larger set of error bars
corresponds to the error associated with one SDSS mock
(i.e., the dispersion among the mocks), and the smaller

set to the standard deviation divided by
√
23, i.e., the

error associated with the average. Based on the larger
set of error bars, one sees that we expect to recover the
input power spectrum within 1σ for a survey comparable
to Stripe 82. The dispersion among the mocks is consis-
tent with the Gaussian error based on the inverse Fisher
matrix to within 18%.
Fig. 13 shows the best-fit values of the cosmological

parameters extracted from each mock. As in Fig. 7, the
range of values is consistent with the input model, with
an average Ω0.7

m σ8 = 0.303, the same as the true input
value. The rms value over all the mocks is 0.022 and is
consistent with the 1σ error bars assigned to the param-
eter in a typical mock.

Fig. 13.— Best fit values of the cosmological parameters
extracted from the Cl’s of 23 mock catalogs (similar to Fig. 7
for ξ).

5.1.3. Data

We next apply this method to the real Stripe 82 data.
Figure 14 shows the resulting QE power spectra for EE
(left) and BB (right) modes for σz < 0.15 (top pan-
els) and σz < 0.2 (middle panels), in comparison to the
case with no σz cut in the bottom panels (“All” case
in Figure 1). The case with no σz cut has the smallest
shape noise (Ngal = 254/(0.1◦)2) and is the most simi-
lar to the level of shape noise in the SDSS mocks (i.e.,
Ngal = 264/(0.1◦)2). We detect strong EE-mode power
with relatively negligible BB mode in this case, when the
shape noise parameter is allowed to vary. Unfortunately,
this case is not useful for deriving cosmological parame-
ters, as we do not know the redshift distribution of the
source galaxies (i.e., signal) accurately enough.
For the cases with σz < 0.15 and σz < 0.2, the shape

noise is much larger (129 and 163/(0.1◦)2, respectively).

To decrease the degrees of freedom in accordance with
the larger noise level, we either fix the BB mode to zero
or fix the shape noise using the measured rms fluctua-
tions in shear. We adopt the latter as our main result.
Letting both vary simultaneously does not produce ro-
bust constraints with this noisy data set.
The top and the middle panels of Figure 14 show the

QE power spectra when the rms shape noise for each
component of the shear is fixed to be 0.262 and 0.275,
respectively. Note that the resulting BB mode is con-
sistent with zero for most of the bands. Meanwhile, the
band beyond l > 1000 is systematically low compared
to the small-scale clustering we expect for a reasonable
range of concordance cosmologies. The error bar is so
large though that including this band in the final fits
does not change the parameter extraction. For each of
the measured power spectra, the solid line is the best-
fit, flat ΛCDM cosmology that will be presented in Sec-
tion 6. The red dotted line shows a rough estimate of
the contribution of the shape noise to the error on the
band power; it is close to, but smaller than the measured
power. If we fix the BB mode to zero, instead of fixing
the shape noise, we find similar results. In detail, for
σz < 0.15, the band power is slightly lower when we fix
the BB mode to zero, a sign that the true shape noise
level probably is slightly higher (by 1%) than σ2

γ = 0.262
that we assumed. For σz < 0.2, we find almost identical
results for both treatments.

5.2. Pseudo Estimator

We next use the pseudo estimator to derive band pow-
ers and cross-check the band power measurement derived
using the quadratic estimator.

5.2.1. Method

Given the long and thin survey geometry of Stripe 82,
one can make a flat-sky approximation and, in an ideal
case, compute a discrete Fourier Transform to derive
the power spectrum. A complication arises because of
the incomplete coverage of the survey area and the non-
uniform sampling densities. Without any treatment, the
shape noise contribution in the power spectrum is derived

from
∫

d~x
σ2

γ

Ni
rather than

σ2

γ

N̄
, where Ni is the number of

galaxies for the ith pixel and N̄ is the average number
of galaxies. It is apparent that pixels with zero galaxies
will make the shape noise estimation difficult in the non-
uniform sampling case. In order to resolve this issue, we
design a pseudo power estimator that weighs the shear
values in each pixel by the number of galaxies in that
pixel, i.e., by inverse variance:

γ̃ ≡ Niγ

N̄
. (22)

Then this makes the shape noise contribution to the

power spectrum be simply
σ2

γ

N̄
.

Meanwhile, such a weighting results in a convolution of
power in Fourier space and therefore in mode-mixing be-
tween E- and B-modes. That is, the estimator is biased
relative to the true power spectrum and also it is not an
optimal estimator. In order to derive an unbiased esti-
mate of the true power spectrum from the pseudo power
spectrum, we need to construct the mode-coupling ma-
trix based on the number weighting scheme we used and
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Fig. 14.— Estimates of the EE (left) and BB (right) power spectra for the SDSS Stripe 82 data with |e1|, |e2| < 1.4. The top panels show
the case with σz < 0.15, and the middle panels show the case with σz < 0.2. The bottom panels show the case with no σz cut. The first
two cases have quite high shape noise contributions. To decrease the number of degrees of freedom, we derive band powers while fixing the
shape noise to be the measured rms fluctuations in shear: σ2

γ = 0.262 and 0.275, respectively. The solid lines show the best-fit cosmologies
for these two cases. The red dotted lines show the level of the shape noise contribution to the error on the band power. As a comparison,
the bottom panels for the no σz cut case show the band power derived while the shape noise is allowed to vary. While the EE band power
is derived with a higher significance, the uncertainty in the redshift distribution of the source galaxies make this case difficult to interpret.
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Fig. 15.— Average power spectra of the 23 SDSS mocks
using the pseudo estimator (PE) in comparison with the
quadratic estimator (QE). There are two sets of error bars.
The larger set of error bars show the standard deviation
among the 23 mocks. The smaller set of error bars show the
error associated with the average of the 23 mocks, i.e., the
standard deviation divided by

√
23. The dashed line shows

the input EE power spectrum. The input BB power is zero.

deconvolve it by matrix inversion. Hikage et al. (2011)
have shown the procedure for deriving the unbiased esti-
mate of the true power spectrum from the pseudo power
spectrum in the presence of a survey masking effect. Our
case is analogous to theirs except that our pseudo power
spectrum includes the effect of the number weighting
scheme rather than the masking effect. We therefore fol-
low the deconvolution procedure in Hikage et al. (2011)
to remove the mode-coupling effect due to the weight-
ing as well as the finite sky effect. We refer readers
to Hikage et al. (2011) for further details for setting up
these matrix operations.

5.3. Pseudo Estimator vs. Quadratic Estimator

In Figure 15, we show the average and standard de-
viation of 23 SDSS mock power spectra derived using
the pseudo estimator (red triangles for E-mode and ma-
genta pentagons for B-mode) in comparison with the
quadratic estimator (black squares for E and blue cir-
cles for B-mode). For the pseudo estimator, we use the
input rms shape noise to subtract off the shape noise
contribution. We cut off l > 1000 for the pseudo esti-
mator: our pixel resolution causes a non-zero aliasing of
power from smaller scales onto this scale. We observe a
sign of deviation from the input power spectrum in the E-
mode of the pseudo estimator at l ∼ 160, but overall the
results between the pseudo estimator and the quadratic
estimator appear quite consistent.
We next apply the pseudo estimator to the Stripe 82

data. We again assume σ2
γ = 0.262 and 0.275, respec-

tively, for each of the two data sets with σz < 0.15 and
σz < 0.2. The error bars are derived by regenerating
SDSS mocks using the sampling density distribution and

σ2
γ of each of the two data sets and by taking the disper-

sion among the 23 mocks. Figure 16 shows the resulting
band power of the Stripe 82 data using the pseudo esti-
mator, in comparison to the quadratic estimator. Overall
we find consistency between the two estimators.

6. CONSTRAINTS ON COSMOLOGICAL
PARAMETERS

The cosmic shear measurements described above are
most sensitive to the power on scales of 10 − 60′ or
l ∼ 100 − 800. This power is sensitive primarily to the
amplitude of the fluctuations σ8 and the matter density
Ωm; Fig. 17 displays the sensitivity to σ8 for fixed Ωm.
The theoretical predictions are obtained by convolving

the nonlinear power spectrum in Eq. (3) with the window
function describing the galaxy distribution, as plotted in
Fig. 5. We approximate the nonlinear spectrum as a
function of k and z using halofit (Smith et al. 2003).
Recent work (Eifler 2010) has shown that halofit un-
derpredicts the power spectrum by 6-7% on the scales
of interest, compared with accurately calibrated simu-
lations (Lawrence et al. 2010). Our implementation of
halofit also differs from the simulations at about the
same level at z = 0, but fortuitously agrees with them to
within a few percent on the scales and redshifts probed
by the Stripe 82 data. The systematic error on the cos-
mological parameters due to this theoretical uncertainty
then should be at most 3% (since the power spectrum
scales roughly as the square of σ8) and is probably far
below that. It is much smaller than the statistical uncer-
tainty.
A final check is to compare the constraints in param-

eter space from the different data sets (σz < 0.15, 0.20)
and techniques (Cl, ξ+, ξE). It is simplest to compare the
constraints on a single parameter, instead of in the 2D
(σ8,Ωm) plane. As shown in Fig. 7, the data are most
sensitive to the combination Ω0.7

m σ8; Fig. 18 shows the
constraints on this combination for the different ways of
analyzing the data. The different cuts and techniques
lead to consistent constraints. We also note that our
best-fit χ2 = 6 using the ξ data for the σz < 0.15 sample,
while χ2 = 35 assuming no signal (ξ = 0); the resulting
∆χ2 = 29, indicating 5-σ detection of the cosmic shear
signal in our data.
For our final constraints, we choose the most conser-

vative cut, the data set with σz < 0.15, using ξE , which
is un-contaminated by the B-modes. Fig. 19 shows our
results in the Ωm, σ8 plane. The 1-σ range on the con-
strained parameter is

Ω0.7
m σ8 = 0.252+0.032

−0.052. (23)

The error bars are consistent with those obtained with
the mock catalogs, accounting for the lower galaxy den-
sity in the sample with the photo-z cuts.
Fig. 19 shows the constraints in the 2D plane along

with the constraints from the WMAP 7-year data
(Komatsu et al. 2011). The two data sets give consistent
results, and the complementarity tightens the constraints
on Ωm at the high end.

7. CONCLUSIONS

We have performed a cosmic shear analysis of the SDSS
coadd data (Annis et al. 2011), a 275 square degree area
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Fig. 16.— Estimates of the pseudo EE (left) and BB (right) power spectra for the SDSS Stripe 82 data (red triangles for
E-mode and magenta pentagons for B-mode). We also plot the results of the quadratic estimator for comparison (black squares
for E and blue circles for B-mode). The solid blue line shows the best-fit cosmology to the quadratic estimator. We find an
overall consistency between the two estimators.

of the SDSS imaging data where we achieve 2 magnitudes
fainter than the nominal depth of the survey through
the coaddition of multiple exposures. Photometric red-
shifts for the coadd galaxies were obtained from their col-
ors using a neural network algorithm (Reis et al. 2011)
and corrections to the PSF modeling for accurate galaxy
shape measurements were implemented as part of this
work (Section 2).
Through a > 5σ detection of the cosmic shear signal in

the SDSS coadd data, we have measured the combination
of the matter density Ωm and the amplitude of matter
fluctuations σ8 in the Universe. The measurement was
performed using both the shear-shear angular correlation
function in real space (Section 4) and the power spectrum

in Fourier space (Section 5). We tested the quadratic es-
timator introduced by Hu & White (2001) for the power
spectrum, plus our own version of the pseudo estimator;
such power spectrum methods have not been commonly
used in previous cosmic shear analyses of real data. Our
power spectrum results are consistent with each other
and with our correlation function results (Fig. 18). Our
cosmological parameter constraint may be expressed as
Ω0.7

m σ8 = 0.252+0.032
−0.052, which is in good agreement with

WMAP (Fig. 19), as well as with other recent weak lens-
ing surveys, in particular the next two largest area sam-
ples, CFHTLS (Fu et al. 2008, at 57 deg2) and CTIO
(Jarvis et al. 2003, at 75 deg2), plus the much deeper
COSMOS data set (Schrabback et al. 2010).
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Fig. 17.— The power spectrum of the convergence, the EE
spectrum, for different values of σ8 and fixed Ωm together
with the data from §5 (σz < 0.15). Each (colored) data point
is shown at the central value of its l-band. The result, though,
can be interpreted only with the aid of the window function
(dashed curves; unnormalized here), so, e.g., the band cen-
tered at l = 240 is actually most sensitive to power at l ∼ 170.

Fig. 18.— 68% Confidence levels on the parameter Ω0.7
m σ8

from the different data sets and analysis techniques. Also
shown is the 1-σ band from WMAP (Larson et al. 2011).

We have shown that the systematic effects on the cor-
relation function due to PSF mis-modeling in our data
are at the sub-percent level for scales up to 2◦. We also
tested samples with different photometric redshift error
cuts. The most conservative σz cuts result in slightly
better agreement among the different methods, indicat-
ing a minor effect and confirming the assumption that
accurate photo-z estimates are crucial for cosmic shear
studies.
Our 275 deg2 Stripe 82 coadd data is the largest area

survey for which cosmic shear has been measured, and
our results pose an important precedent for future anal-
yses of even larger area surveys, such as the Dark Energy
Survey and LSST.

Fig. 19.— Constraints on cosmological parameters from
SDSS Stripe 82 cosmic shear at the 1- and 2-σ level. Also
shown are the constraints from WMAP. The innermost region
is the combined constraint from both WMAP and Stripe 82.
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